The correct option is B 4e
Let P=limn→∞n∏r=1(n+rn)1n
⇒P=limn→∞[n+1n⋅n+2n⋯n+nn]1n
Taking ln on both sides, we have
lnP=limn→∞1n[ln(n+1n)+ln(n+2n)+⋯+ln(n+nn)]
=limn→∞1nn∑r=1ln(1+rn)=1∫0ln(1+x)dx
Using By parts,
lnP=[xln(1+x)−x+ln(1+x)]10⇒lnP=ln4−1⇒lnP=ln(4e)∴P=4e