The value of limn→∞[1na+1na+1+1na+2+⋯+1nb] where a,b>0 and a≠b is:
A
ln(ba)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ln(ab)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ln(a2b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln(a+b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aln(ba) The given limit is L=limn→∞[1na+1na+1+1na+2+⋯+1na+n(b−a)] =limn→∞(b−a)n∑r=01na+r =limn→∞1n(b−a)n∑r=01a+rn =(b−a)∫0dxa+x=[ln|a+x|]b−a0 =lnb−lna=ln(ba)