Let P=limn→∞(tan(π2n)⋅tan(2π2n)⋯tan((n−1)π2n))1/n
Taking ln both sides, we get
lnP=limn→∞1n[lntan(π2n)+lntan(2π2n)+⋯+lntan((n−1)π2n)]⇒lnP=limn→∞n−1∑r=11nlntan(πr2n)=1∫0lntan(πx2)dx
Putting πx2=y⇒dx=2πdy, we have
lnP=2ππ/2∫0lntany dy ⋯(i)
Now, let I=π/2∫0lntany dy
=π/2∫0lntan(π2−y)dy ⎛⎜⎝∵a∫0f(x)dx=a∫0f(a−x)dx⎞⎟⎠
=π/2∫0lncoty dy
=−π/2∫0lntany dy=−I
So, I+I=0⇒I=0
From equation (i),
lnP=0⇒P=e0=1