wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of limn(tan(π2n)tan(2π2n)tan((n1)π2n))1/n is

Open in App
Solution

Let P=limn(tan(π2n)tan(2π2n)tan((n1)π2n))1/n
Taking ln both sides, we get
lnP=limn1n[lntan(π2n)+lntan(2π2n)++lntan((n1)π2n)]lnP=limnn1r=11nlntan(πr2n)=10lntan(πx2)dx
Putting πx2=ydx=2πdy, we have
lnP=2ππ/20lntany dy (i)

Now, let I=π/20lntany dy
=π/20lntan(π2y)dy a0f(x)dx=a0f(ax)dx
=π/20lncoty dy
=π/20lntany dy=I
So, I+I=0I=0
From equation (i),
lnP=0P=e0=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon