The correct option is A e−1e
L=limn→∞11+22+33+⋯+nn1n+2n+3n+⋯+nn
=limn→∞1nn+22nn+33nn+⋯+1limn→∞(1n)n+(2n)n+(3n)n+⋯+(nn)n
=limn→∞1(nn)n+(n−1n)n+(n−2n)n+⋯+(1n)n
=limn→∞11+(1−1n)n+(1−2n)n+(1−3n)n+⋯
=11+e−1+e−2+e−3+⋯[If limx→af(x)=1 & limx→ag(x)=∞,then limx→a[f(x)]g(x)=e limx→a [f(x)−1] g(x)]
=111−e−1
=e−1e