The value of limn→∞1n3([12x]+[22x]+⋯+[n2x]),x∈R is equal to (Here [ .] denotes the greatest integer function)
If [x] denotes the greatest integer ≤ x, then evaluate limn→∞1n3{[12x]+[22x]+[32x+.....+[n2x]}
If f(x)=limn→∞∑nr−=1rx1.3.5…(2r+1), then ∫30[f(x)]d(x−[x]) is equal to (where [.] denotes greatest integer function)