The value of limn→∞(n!(mn)n)1/n, where m∈N is equal to
A
1em
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
me
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
em
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
em
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1em Let P=limn→∞(n!(mn)n)1/n ⇒P=limn→∞(1⋅2⋅3⋅4⋅5⋯(n−1)⋅nnn)1/n×1m⇒P=limn→∞[(1n)⋅(2n)⋅(3n)⋅⋯(n−1n)⋅(nn)]1/n×1m Taking ln both sides, ⇒lnP=limn→∞1nn∑r=1ln(rn)+ln(1m)=1∫0lnxdx−lnm =[xlnx−x]10−lnm=(0−1)−(limx→0lnx1/x−0)−lnm=−1−limx→01/x−1/x2−lnm=−1−lnm