The correct option is B 12
We know that,
n<√n2+n+1<n+1 for large value of n.
Hence, [√n2+n+1]=n (∵n∈Z)
∴L=limn→∞(√n2+n+1−n)
=limn→∞n+1(√n2+n+1+n)
=limn→∞1+1n(√1+1n+1n2+1)
=12 (∵we know, as n→∞,1n→0)
Alternate Solution:
Let L=limn→∞√n2+n+1
⇒L−n=limn→∞(√n2+n+1−n)
=limn→∞n+1(√n2+n+1+n)
=limn→∞1+1n(√1+1n+1n2+1)
=12
∴L=12+n
Taking greatest integer function both the sides, we get
∴[L]=[12+n]=n (∵n∈Z)
∴limn→∞(√n2+n+1−[√n2+n+1])
=limn→∞(√n2+n+1−n)
=12