The value oflimx→ 0(1+x)1x is-------
e
We have, limx→ 0(1+x)1x
At x=0, the value of the given expression takes 1∞ form
(1+x)1x=e1xloge(1+x) { y=elny}
Expansion of ln(1+x)=x−x22+x33- .......
=e1x(x−x22+x33−......)
=e(1−x2+x23−......)
limx→ 0(1+x)1x=limx→ 0e{1−x2+x23−....}
=e{1−0+0−....}
=e1=e