The value of limx→ 0(1+x)1x−e+12exx2 is ---------
We have,limx→ 0(1+x)1x−e+12exx2 ........(1)
At x=0, the value of the given expression takes 00 form
since,limx→ 0(1+x)1x=e
e−e+00=00 form
(1+x)1x=e1xloge(1+x) {y=elogey}
We know expansion of loge(1+x)=x−x22+x33.......
(1+x)1x=e(1+x){ x−x22+x33−.......}
=e{ 1−x2+x23−.......}
=e.e−x2+x23−.......
Applying the expression of ex
(1+x)1x=e.[1+(−x2+x23−......)+12!(−x2+x23−......)2+......]
{ ex=1+x+x22!+x33!+......}
=e.{1+(−x2+x23+.....)+12!(x24+......terms with power more than x2}
=e{1−x2+x23+x28+.....terms with power more than x2}
(1+x)1x=e{1−x2+1124x2+.....terms with power more than x2}
Substituting the value of (1+x)1x in equation 1
limx→ 0e{1−x2+1124x2+.....terms with power more than x2}−e+12exx2
=limx→ 0{ e−ex+1124x2+.....terms with power more than x2}−e+12exx2
=limx→ 01124e+.......terms which has variable x
Puttingx=0
=1124e+0
=1124e
Option A is correct