The correct option is D does not exist
L.H.L.=limx→0−[sin[x−3][x−3]]
=limh→0[sin([0−h−3])[0−h−3]]
=limh→0[sin([−h−3])[−h−3]]
=[sin(−4)−4]
=[sin(4)4]=−1
(∵sin4<0 as π<4<3π2)
R.H.L.=limx→0+[sin([x−3])[x−3]]
=limh→0[sin([0+h−3])[0+h−3]]
=[sin(−3)−3]
=[sin(3)3]=0
(∵sin3>0 as π2<3<π)
⇒L.H.L.≠R.H.L.
Hence, limit does not exist.