The correct option is C 0
Since ex2>0,e2x2>0 in [0,x], where x>0
So, x∫0ex2dx and x∫0e2x2dx→∞ as x→∞
So the given limit, L=limx→∞⎛⎜⎝x∫0ex2⎞⎟⎠2x∫0e2x2 is of the form ∞∞.
Therefore, Using L' Hospital's Rule
L=limx→∞2ex2x∫0ex2dxe2x2=2limx→∞x∫0ex2dxex2
Again applying L-Hospital's Rule
=2limx→∞ex22xex2=limx→∞1x=0