The correct option is A −e2
limx→0(1+x)1/x−ex
=limx→0e1/xlog(1+x)−ex
=limx→0e1−x2+x23−x34...−ex (∵log(1+x)=x−x22+x33)
=elimx→0e−x2+x23−x34...−1x
=elimx→0e−x2+x23−x34...−1−x2+x23−x34...×−x2+x23−x34...x
=e(1)(−12)
=−e2
Alternate Solution
limx→0(1+x)1/x−ex=limx→0e1xln(1+x)−ex [00 form]Applying L'Hopital's Rule=limx→0e1xln(1+x)[1x×11+x−ln(1+x)x2]1=limx→0(1+x)1/x × limx→0x1+x−ln(1+x)x2=e × limx→011+x−x(1+x)2−1(1+x)2x=e × limx→0−12(1+x)2=−e2