limx→06sinx+3sin2x−4sin3xx2sinx=limx→06sinx+6sinxcosx−4(3sinx−4sin3x)x2sinx=limx→06+6cosx−12+16sin2xx2=limx→06cosx−6+16sin2xx2=16limx→0sin2xx2−6limx→01−cosxx2=16−3=13
Alternate Solution:
L=limx→06sinx+3sin2x−4sin3xx2sinx=limx→06(x−x33!+...)+3(2x−(2x)33!+...)−4(3x−(3x)33!+...)x2(x−x33!+...)=limx→06x−6x33!+6x−24x33!−12x+108x33!+.....x3(1−x23!+...)=−6−24+1083!=13