The correct option is B same as the value of limx→0sin2xtan3x
The value of limx→03√1+sinx−3√1−sinxx
limx→0(1+sinx)−(1−sinx)(1+sinx)23+(1+sinx)13(1−sinx)13+(1−sinx)23.1x
limx→01(1+sinx)23+(1+sinx)13(1−sinx)13+(1−sinx)23.2sinxx
=2⋅1⋅13
=23
We can clearly observe from the given options that the value of limx→0sin2xtan3x is also =23