The correct option is D Does not exist.
Given : limx→0tan(πsin2x)+(|x|−sin(x[x]))2x2
L.H.L.=limx→0−tan(πsin2x)+(−x−sinx(−1))2x2=limx→0−[tan(πsin2x)πsin2x×πsin2xx2]+[−1+sinxx]2=π+(−1+1)2=π
R.H.L.=limx→0+tan(πsin2x)+(x−0)2x2=limx→0+tan(πsin2x)πsin2x×πsin2xx2+(1)2=π+(1)2=π+1
∴L.H.L.≠R.H.L.
So, limit does not exist.