The correct option is D Does not exist.
Given : limx→0tan(πsin2x)+(|x|−sin(x[x]))2x2
L.H.L.
=limx→0−tan(πsin2x)+(|x|−sin(x[x]))2x2
=limh→0tan(πsin2(0−h))+(|0−h|−sin((0−h)[0−h]))2(0−h)2
=limh→0tan(πsin2h)+(h−sinh)2h2
=limh→0(tan(πsin2h)πsin2h×πsin2hh2)+(1−sinhh)2
=π+(1−1)2
=π
R.H.L.
=limx→0+tan(πsin2x)+(|x|−sin(x[x]))2x2
=limh→0tan(πsin2(0+h))+(|0+h|−sin((0+h)[0+h]))2(0+h)2
=limh→0tan(πsin2h)+(h−0)2h2
=limh→0tan(πsin2h)πsin2h×πsin2hh2+(1)2
=π+(1)2
=π+1
∴L.H.L.≠R.H.L.
So, limit does not exist.