The correct option is D 14
We have limx → 11−√x(cos−1 x)2=limx → 1(1−√x)(1+√x)(cos−1x)2(1+√x)
=limx → 11−x(cos−1x)2(1+√x)
limθ → 01−cosθθ2(1+√cos θ), where x=cosθ
[∵ x → 1⇒cosθ→1⇒θ→0]
limθ → 01−cosθθ21(1+√cosθ)
limθ → 02sin2θ24θ24(11+√cosθ)
=12limθ → 0⎛⎜
⎜
⎜⎝sinθ2θ2⎞⎟
⎟
⎟⎠21(1+√cosθ)=12(1)21(1+1)=14