The value of limx→3√x+6−sin(x−3)−3(x−3)cos(x−3) is equal to
You are given cosx=1−x22!+x44!−x66!......; sinx=x−x33!+x55!−x77!......; tanx=x+x33+2x515...... Then the value of limx→0xcosx+sinxx2+tanx is
6(3x + 2) - 5(6x - 1) = 6(x - 3) - 5(7x - 6) + 12x