The correct option is B 0
L=limx → ∞(2xn)1ex−(3xn)1exxn=limx → ∞(3)xnex⎛⎝(23)xnex⎞⎠−1xn
Now, limx → ∞xnex=limx → ∞n!ex=0 (Differentiating numerator and denominator n times for L'Hospital's rule)
Hence, L=limx → ∞(3)xnexlimx → ∞((23)xnex)−1xnexlimx → ∞1ex
=1×log(2/3)×0=0