The value of limx→∞y(x) obtained from the differential equation dydx=y−y2, where y(0)=2 is
Open in App
Solution
dydx=y−y2 ⇒dyy(y−1)=−dx
Integrating both sides, we have ∫dyy(y−1)=−∫dx⇒∫(1y−1−1y)dy=−∫dx⇒ln∣∣∣y−1y∣∣∣=−x+c
Given, y(0)=2⇒c=−ln2 ∴ln∣∣∣y−1y∣∣∣=−x−ln2 ⇒∣∣∣2(y−1)y∣∣∣=e−x
When x→∞, we get ∣∣∣2(y−1)y∣∣∣=0 ⇒y=1