The value of limx→0+[xsin(1x)+(sinx)1/x+(1x)sinx], is
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Limit does not exist
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1 L=limx→0+[xsin(1x)+(sinx)1/x+(1x)sinx] ⇒L=0+0+limx→0+(1x)sinx ⇒L=limx→0+(1x)sinx Taking loge to both the sides, ⇒lnL=limx→0+(−sinx)lnx ⇒lnL=−limx→0+lnxcosecx(∞∞form) ⇒lnL=−limx→0+1x−cosecx⋅cotx ⇒lnL=limx→0+(sinxx)tanx ⇒lnL=1×0=0⇒L=1