The value of limn→∞[n1+n2+n4+n2+n9+n2+⋯+12n] is equal to [Bihar CEE 1994]
π4
We have, limn→∞[n1+n2+n4+n2+⋯+12n]
=limn→∞∑nr=1nr2+n2=limn→∞∑nr=1nn2(1+r2n2)
=limn→∞∑nr=11n⎛⎜
⎜⎝11+r2n2⎞⎟
⎟⎠=∫10dx1+x2,
{Applying formula, limn→∞∑n−1r=1{f(rn)}1n=∫10f(x)dx}
=[tan−1x]10=tan−11−tan−10=π4