The value of limn→∞∑(n+1)2r=n2(1√r) is___.
2
f(n)=1√n2+1√n2+1+1√n2+2+....+1√n2+2n+1 Total number terms = 2n + 2 =2n+2√n2+2n+1≤f(n)≤2n+2√n2limn→∞2n+2√n2+2n+1=2limn→∞2n+2√n2=2SOlimn→∞∑(n+1)2r=n2(1√r)=2