The value of limn→∞∑nr=1r2n3+n2+r equals
This problem uses sandwich theorem.
The given series is limn→∞∑nr=1r2n3+n2+r which can be expressed as limn→∞Sn where Sn=∑nr=1r2n3+n2+r.
Now, we can see that
r2n3+n2+n≤r2n3+n2+r≤r2n3
Applying ∑nr=1 on the inequality, we get
⇒∑nr=1r2n3+n2+n≤∑nr=1r2n3+n2+r≤∑nr=1r2n3⇒1n3+n2+n∑nr=1r2≤Sn≤1n3∑nr=1r2⇒1n3+n2+nn(n+1)(2n+1)6≤Sn≤1n3n(n+1)(2n+1)6⇒16n(n+1)(2n+1)n3+n2+n≤Sn≤16n(n+1)(2n+1)n3
Taking limn→∞ on the inequality, we get
⇒limn→∞16n(n+1)(2n+1)n3+n2+n≤limn→∞Sn≤limn→∞16n(n+1)(2n+1)n3⇒limn→∞162n3+3n2+nn3+n2+n≤limn→∞Sn≤limn→∞162n3+3n2+nn3⇒16.limn→∞(2+3n+1n2)(1+1n+1n2)≤limn→∞Sn≤16.limn→∞(2+3n+1n2)1⇒16(2+0+0)(1+0+0)≤limn→∞Sn≤16(2+0+0)1⇒13≤limn→∞Sn≤13⇒limn→∞Sn=13.
Hence the required limit is 13.
Therefore, Option A is correct.