The value of limx→0sinαx+bxax+sinbx is (a,b,a+b≠0)
1
a
b
a+b
limx→0sinaxx+ba+sinaxx=a+ba+b=1
limx→0sinax+bxax+sinbx
The value of limx→0sinax+bxax+sinbx,a,b,a+b≠0, is
Evaluate the following limit: limx→0sin ax + bxax+sin bx,a,b,a+b≠0