The value of limx→0√a2−ax+x2−√a2+ax+x2√a+x−√a−x is
The correct option is
B
√a
limx→0√a2−ax+x2−√a2+ax+x2√a+x−√a−x
Multiplying (√a2−ax+x2+√a2+ax+x2) and (√a+x+√a−x) in N' and D'
=limx→0(a2+x2−ax−a2−ax−a2)(√a+x+√a−x)(a+x+a+x)(√x2−ax+x2+√a2+ax+x2)
=limx→0−2ax(√a+x+√a−x)2x(√a2+ax+x2+√a2+ax+x2)
=limx→0−2a(√a+0+√a−0)2(√a2+a(0)+(0)2+√a2+a(0)+(0)2)
=−a(2√a)2a=−√a