The value of limx→0((sin x)1x+(1/x)sin x) where x>0 is
limx→0(sin x)1x+(1x)sin x=limx→0(sin x)1x+limx→0(1x)sin x=0+elimx→0sin xln1x=elimx→0−ln(x)cosecx=elimx→0−1x−cosecx cot x=elimx→0sin xx.tanx=e0=1
limx→0(sin xx)(sin xx−sin x) equals