The value of limx→1x+x2+x3+......xnx−1 is
The expansion (1+x)n = 1 + nx + n(n−1)2!(x)2........... is valid if |x| > 1.
If 1+(1+x)+(1+x)2+(1+x)3+......+(1+x)n=∑nk=0akxk, then which of the following is true?