The correct option is B −(1+1π)
Wehavelimx→−∞x5cos(1πx2)+x6sin(1πx)+7|x|5+6|x|+7Applyingansionsweget,limx→−∞x5⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩1−(1πx2)22!+(1πx2)44!−(1πx2)66!⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭+x6⎧⎪⎨⎪⎩1−1πx−(1πx)33!+(1πx)55!....∞⎫⎪⎬⎪⎭+7∣∣x5∣∣+6|x|+7limx→−∞x5[(1+1π)+1x4(−1π22!+1π55!)]−x3π33!+7....∞∣∣x5∣∣+6|x|+7limx→−∞x5[(1+1π)+1x4(−1π22!+1π55!)]−x3π33!+7....∞|x|5(1+6|x|4+7|x|5)Applyingthelimit,weget−(1+1π).Hence,theoptionCisthecorrectanswer.