The value of limx→0∫0x2sec2tx.sinxdt
3
2
1
0
Explanation of the correct option.
Compute the required value.
Given : limx→0∫0x2sec2tdtx.sinx
Using Leibnitz rule,
=limx→0tanx2-tan0xsinx
=limx→0tanx2xsinx
It can be written as,
=limx→0tanx2x2×x2×xsinx×1x×x=limx→0tanx2x2×xsinxlimx→0tanx2x2=1,limx→0sinxx=1=1×1=1
Therefore the value of limx→0∫0x2sec2tx.sinxdt is 1.
Hence, option C is the correct option.