The value of limx→252-X is
102
+∞
-∞
does not exist.
Explanation of the correct option.
Step 1: Compute L.H.L.
limx→252-X
=limh→052-2-h
=limh→052-2-h×2+2-h2+2-h
=limh→052+2-h2-2+h
=+∞
Step 2: Compute R.H.L.
=limh→052-2+h
=limh→052-2-h×2+2+h2+2+h
=limh→052+2-h2-2-h
=-∞
Since, L.H.L.≠R.H.L.
Therefore limit does not exist.
Hence, option D is the correct option.
In the equation y=x2−2x+2, what is the value of y, if the value of x=−2?