The value of limx→∞a2x2+ax+1-a2x2+1is
12
1
2
None of these.
Explanation of the correct option.
Compute the required value.
Given : limx→∞a2x2+ax+1-a2x2+1
Multiply and divide by a2x2+ax+1+a2x2+1.
⇒limx→∞a2x2+ax+1-a2x2+1a2x2+ax+1+a2x2+1×a2x2+ax+1+a2x2+1⇒limx→∞a2x2+ax+1-a2x2+1a2x2+ax+1+a2x2+1⇒limx→∞axax1+axa2x2+1a2x2+ax1+1a2x2⇒limx→∞axax1+axa2x2+1a2x2+1+1a2x2⇒limx→∞11+aa2x+1a2x2+1+1a2x2⇒limx→∞11+1⇒12
Therefore, the value of limx→∞a2x2+ax+1-a2x2+1 is 12.
Hence,option A is the correct option.
The value of limx→0√a2−ax+x2−√a2+ax+x2√a+x−√a−x is