The value of limx→∞x2-2x+1x2-4x+2x is
e2
e-2
e6
None of these
Explanation for the correct option
Given, limx→∞x2-2x+1x2-4x+2x
limx→∞x2-2x+1x2-4x+2x=limx→∞x2-2x-2x+2x+1-1+1x2-4x+2x=limx→∞x2-4x+2+2x-1x2-4x+2x=limx→∞1+2x-1x2-4x+2x=limx→∞1+2x-1x2-4x+2xx2-4x+22x-12x-1x2-4x+2=limx→∞1+2x-1x2-4x+2x2-4x+22x-12x-1x2-4x+2x=limx→∞1+annax22-1xx21-4x+2x2[a=2x-1,n=x2-4x+2]=ea1a2-1∞1-4∞+2∞2[∵limn→∞1+xnn=ex]=ea×1a2-01-0+0[∵Kmn=Km×n,1∞=0]=e21=e2
Therefore, limx→∞x2-2x+1x2-4x+2x=e2.
Hence, option(A) is correct.