The value of limx→∞x2+bx+4x2+ax+5 is
ba
0
1
45
Explanation of the correct option.
Compute the required value.
Given : limx→∞x2+bx+4x2+ax+5
Divide both numerator and denominator by the highest power of x,
⇒limx→∞x2x2+bxx2+4x2x2x2+axx2+5x2⇒limx→∞1+bx+4x21+ax+5x2⇒1+0+01+0+0⇒1
Therefore the value of limx→∞x2+bx+4x2+ax+5 is 1.
Hence,option C is the correct option.