The value of mϵR for which both of the roots of equation x2−6mx+9m2−2m+2=0 exceed 3 is (ab,∞) Find a−b
Open in App
Solution
Let f(x)=0 are greater than 3, we can take D≥0, af(3)>0 and −b20>3 ... (1) Consider D ≥ 0 : −6m2−4.1(9m2−2m+2)≥0 ⇒8m−8≥0∴m≥1ormϵ(1,∞)...............(1) Consider af(3)>0:1.(9−18m+9m2−2m+2)>0 ⇒9m2−20m+11>0⇒(9m−11)(m−1)>0 ⇒(m−119)(m−1)>0 ⇒mϵ(−∞,1)∪(119,∞) ...............(2) Consider −b2a>3: 6m2>3⇒m>1⇒mϵ(1,∞) ..........(3) Hence, the values of m satisfying (1),(2) and (3) at the same time are mϵ(119,∞) ⇒a−b=2 Ans: 2