wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of limnnr=1r+2.n1r=1r+3.n2r=1r+......+n.1n4 is

Open in App
Solution

limxnr=1r+2.n1r=1r+3.n2r=1r......n.1n4 is
(n(n+1)2+2n).(n(n1)2+3(n1)).((n2)(n1)2+4(n2)).((n3)(n2)2+5(n3)).((n(n1))×(n(n2))2)+(2+n1)×(n(n1)).⎜ ⎜ ⎜ ⎜(22+(n+1))n4⎟ ⎟ ⎟ ⎟
⎜ ⎜ ⎜ ⎜ ⎜ ⎜((n+1)2+2).(n2+3n62)......(n+2)n3⎟ ⎟ ⎟ ⎟ ⎟ ⎟ taking n common
12×1.((n2)(n17)2).(n3)(n32).....(n+2)
=

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Stoichiometry of a Chemical Reaction
CHEMISTRY
Watch in App
Join BYJU'S Learning Program
CrossIcon