We have,
limn→∞{11.2+12.3+13.4+......+1(n−1).n}
=limn→∞{1(2−1)1.2+1(3−2)2.3+1(4−3)3.4+......+1(n−(n−1))(n−1).n}
=limn→∞{1.21.2−1.11.2+1.32.3−1.22.3+1.43.4−1.33.4+.......+n(n−1).n−(n−1)(n−1).n}
=limn→∞{1−12+12−13+13−14+.......+1n−1−1n}
=1
Hence, this is the answer.