The correct option is
D 16limx→ 0cos(sinx)−cosxx4
Rewriting the difference in the numerator as a product
cosθ−cosϕ⋅2sinθ+ϕ2sinϕ−θ2
limx→ 02sinx+sinx2sinx−sinx2x4
2limx→ 0[1x4×sin(x+sinx2)×sin(x−sinx2)]
2limx→ 0[1x4sin(x+sinx2)(x+sinx2)×x+sinx2×sin(x−sinx2)(x+sinx2)×x−sinx2
2limx→ 0sin(x+sinx2)(x+sinx2)×limx→ 0sin(x−sinx2)(x−sinx2)×limx→ 0[1x4×(x+sinxx−sinx)4]
2×1×1limx→ 0[1x4×x+sinx2×x−sinx2]
12limx→ 0[x2−sin2xx4]
Replacing \sin x by Maclarian series:-
sinx=x−x33!+x55!⋅⋅⋅
⇒sinx=x2−2x43!+p(x)
We do not need exact expression of p(x)
12limx→ 0[x2−sin2xx4]
⇒12limx→ 0[x2−x2−2x43!+p(x)x4]
12limx→ 0[2x43!−p(x)x4]
∴p′(x) contains x\,power >4
∴p(x)⇒0
⇒12limx→ 0[23!−0]=16