The value of limx→0(1x2−cotx)
limx→0(1x2−cotx)
=limx→0(tanx−x2x2tanx)
00form
=limx→0(sec2x−2xx2sec2x+2xtanx)
=10 as x→0
=∞
Show that limx→01x does not exist.
If
f(x)={xsin1xx≠00x=0,
then limx→0f(x)=