The value of limx→π2sinx−(sinx)sinx1−sinx+ℓnsinx is
We have,
limx→π/2sinx−(sinx)sinx1−sinx+ℓn(sinx)
sinx=t
x→π2sinx→1t→1limt→1t−tt−t+ℓn(t)limt→11−tt[1−logt]−1+1t
limt→1t−tth[1+logt]1−t
limt→11−tth[tht+logt]+[tth×1t+logtth(tht+logt)]−1
1−2−1−1=2
Hence,
Option B is correct answer.