The correct option is B 1
If ax2+bx+c=0 has both the roots at infinity, then it implies that a=0,b=0 and c≠0.
Given (P3−3P2+2P)x2+(P3−P)x+P3+3P2+2P=0,
Comparing both, we get
P3−3P2+2P=0
⇒P(P2−3P+2)=0
⇒P(P2−2P−P+2)=0
⇒P(P−1)(P−2)=0
⇒P=0,1,2⋯⋯(i)
Also,
P3−P=0
⇒P(P−1)(P+1)=0
⇒P=0,±1⋯⋯(ii)
Also,
P3+3P2+2P≠0
⇒P(P2+3P+2)=0
⇒P(P2+2P+P+2)≠0
⇒P(P+1)(P+2)≠0
⇒P≠0,−1,−2⋯⋯(iii)
∴ From (i),(ii),(iii), we get
P=1