The value of p for which the function f(x)=⎡⎢
⎢⎣(4x−1)3sinxplog[1+x23],x≠012(log 4)3,x=0⎤⎥
⎥⎦, x≠0 may be continuous at x = 0, is
4
For f(x) to be continuous at x = 0,
limx→0f(x)=limx→0(4x−1x)3×(xpsinxp).px2log(1+x23)=(log 4)3.1.p.limx→0(x213x2−118x4+…)limx→0f(x)=3p(log 4)4⇒12(log 4)3=3p(log 4)3p=4