The correct option is D a2cot(π2n)
∠A1OA2=2πn
∴A1A2=√R2+R2−2R.Rcos(2πn)
Since cos2θ=1−2sin2θ we have cos(2πn)=1−2sin2πn ⇒A1A2=√2R2−2R2(1−2sin2πn)
=√4R2sin2(πn) =2Rsinπn ...........(1)
Consider A1A3
=√R2+R2−2R.Rcos(4πn) =√2R2−2R2(1−2sin24πn)
=√4R2sin2(4πn)
=2Rsin2πn ...........(2)
Continuing like thisA1A4=2Rsin(3πn) and so on.
πn,2πn,3πn... are in A.P
∴(j−1)th term is
=πn+(j−2)πn=(j−1)πn
∴AiAj=2Rsin(j−1)πn where j=1,2,3,...n
∵∠A1IA2=2πn
In DIA1,
tan(πn)=A1Dr=a2r
∴r=a2cot(πn) ..............(3)
From eqn(2)
A1A2=2Rsin(πn)
or a=2Rsin(πn)
∴R=a2sin(πn)
From eqn(3)
r=acos(πn)2sin(πn)
∴r+R=a2sin(πn)[1+cos(πn)]
Using multiple angle formulae, we have
=a(2cos2(π2n))4sin(π2n)cos(π2n)
∴r+R=a2cot(π2n)