wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of sin π10sin13π10 is
(a) 12

(b) -12

(c) -14

(d) 1

Open in App
Solution

sinπ10 sin13π10=sinπ10 sinπ+3π10=sinπ10 -sin3π10 sinπ+θ=-sinθ sinπ10 sin13π10=-sinπ10 sin3π10 ...1Let θ=π10 i.e. 5θ=π2i.e. 3θ+2θ=π2i.e. 3θ=π2-2θi.e. cos3θ=cosπ2-2θ=sin2θi.e. 4 cos3θ-3 cosθ=2 sinθ cosθ using identity of cos 3θ and sin 2θ

i.e. 4 cos2θ-3=2 sinθi.e. 41-sin2θ-3=2 sinθi.e. 4 sin2θ+2 sinθ-1=0 i.e. Let sinθ=t 4t2+2t-1 roots are=-2±202×4=±5-14i.e. sinθ=5-14i.e. sinπ10=5-14

sin3π10=3sinπ10-4sin3π10=35-14-45-143=345-1-1425-13=345-1-11653-13-355-1=345-34-11655-1-3×5+35=345-34-11655-1-15+35=345-34-11685-16=345-34-125+1 =345-125+1-34 =35-254+4-34=54+14

sin3π10=145+1from 1 sinπ10 sin13π10=-sinπ10 sin3π10 =-5-145+14 =-5-142=-416=-14Hence sin13π10 sinπ10=-14

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon