The value of sin12°sin48°sin54° is :
23
12
18
13
First we use the formula 2sinAsinB=cos(A-B)-cos(A+B)
sin12°sin48°sin54°=12cos(12-48)-cos(12+48)sin54°
=12(cos36°-cos60°)sin54°=12(cos36°-12)sin54°(cos60°=12)=12×12(2cos36°sin54°-sin54°)=14(2cos36°cos36°-cos36°)(sincesin54°=sin(90°-36°)=cos36°)=14(2cos236°-cos36°)=14(2(5+14)2-(5+14))(cos36°=5+14)=14(2(5+1+2516)-(5+14))=14(2(6+2516)-(5+14))=14(18(6+25)-(5+14))=14(28(3+5)-5+14)=14(14(3+5-5-1))=14(14(2))=216=18
Hence, option(C) is the correct answer.