The correct option is A √5−14
cos180=sin(900−180)=sin720
=2sin360cos360
=2(2sin180cos180)(cos2180−sin2180)
=4(sin180cos180)(1−2sin2180)
cos180=4(sin180cos180)(1−2sin2180)
1=4sin180(1−2sin2180)
8sin3180−4sin180+1=0
The following cubic equation is divisible by sin180=12
Therefore
(2sin180−1)(8sin1802+4sin180−2)=0
2(2sin180−1)(4sin1802+2sin180−1)=0
Using quadratic formula we get
2(2sin180−1)(4sin180+(√5+1))(4sin180−(√5−1))=0
sin180=12,sin180=−√5+14,sin180=√5−14
sinθ is positive in the first quadrant and sin300=12
Therefore sin180=√5−14
Hence answer is A