The value of sin25∘+sin210∘+sin215∘+..............
+sin285∘+sin290∘ is equal to
The correct option is
D
192
Given expression is
sin25∘+sin210∘+sin215∘+..............+sin285∘+sin290∘.
We know that sin90∘=1 or sin290∘=1
The angles are in A.P. with common difference 5∘ and has 18 terms. We also know that sin285∘=[sin(90∘−5∘)]2=cos25∘.
Therefore from the complementary rule, we find sin25∘+sin285∘=sin25∘+cos25∘=1
Similarly, for sin210∘+sin280∘=sin210∘+sin2(90−10)∘
=sin210∘+cos210∘=1
So, all we can arrange all terms in pair wise except the middle terms sin245∘ and last term sin90∘ and its values are sin245∘=12 and sin290∘=1
Therefore, sin25∘+sin210∘+sin215∘+.............+sin285∘+sin290∘
=(1+1+1+1+1+1+1+1)+1+12=912=192.