The correct option is B 12
sin2A+sin2(A+B)−2sinAcosBsin(A+B)
Putting B=45∘,
sin2(A+B)=(sinA+cosA)22=12+sinAcosA⋯(1)
2sinAcosBsin(A+B)=sinA(sinA+cosA)=sin2A+sinAcosA⋯(2)
Now, using equation (1) and (2),
sin2A+sin2(A+B)−2sinAcosBsin(A+B)=sin2A+12+sinAcosA−(sin2A+sinAcosA)=12