The value of sin50°-sin70°+sin10° is
0
1
12
The explanation for the correct option
The given trigonometric expression: sin50°-sin70°+sin10°.
It is known that, sin(A)-sin(B)=2cos(A+B2)sin(A-B2).
Thus, sin50°-sin70°+sin10°=2cos50°+70°2sin50°-70°2+sin10°
⇒sin50°-sin70°+sin10°=2cos120°2sin-20°2+sin10°⇒sin50°-sin70°+sin10°=2cos60°sin-10°+sin10°⇒sin50°-sin70°+sin10°=-212sin10°+sin10°⇒sin50°-sin70°+sin10°=-sin10°+sin10°⇒sin50°-sin70°+sin10°=0
Therefore, the value of sin50°-sin70°+sin10° is 0.
Hence, the correct option is (A).