The value of sin55°-cos55°sin10° is
12
2
1
The explanation for the correct option
The given trigonometric expression: sin55°-cos55°sin10°.
sin55°-cos55°sin10°=sin55°-cos90°-35°sin10°⇒sin55°-cos55°sin10°=sin55°-sin35°sin10°∵cos90°-θ=sinθ⇒sin55°-cos55°sin10°=2cos55°+35°2sin55°-35°2sin10°[∵sin(A)-sin(B)=2cos(A+B2)sin(A-B2)]⇒sin55°-cos55°sin10°=2cos90°2sin20°2sin10°⇒sin55°-cos55°sin10°=2cos45°sin10°sin10°⇒sin55°-cos55°sin10°=2×12⇒sin55°-cos55°sin10°=2
Therefore, the value of sin55°-cos55°sin10° is 2.
Hence, the correct option is (D).